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Introduction 

• Raftery et al. (2005) proposed applying 
Bayesian Model Averaging (BMA) to 
ensembles 

• Basic Idea 
– Weight ensemble members based on past 

performance 
– Calibrate ensemble spread 
– Do this by fitting a Normal Mixture statistical 

model to ensemble member forecasts 
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This figure illustrates the BMA technique with a hypothetical 3-member ensemble.  Here, p(y) is the forecast probability density function of variable y, fk is the forecast value from ensemble member k, wk is the weight assigned to ensemble member k, and σ2 is the variance of the Gaussian kernel, N(fk,σ2), applied to each ensemble member.  Note that the three distributions in blue have different values for wk and fk, but share a common value for σ2.  

EKDMOS uses a somewhat similar Kernel Density Estimation (KDE) technique; however, EKDMOS applies equally weighted kernels to the ensemble members.  Likewise, the spread of the EKDMOS PDF is later adjusted with the Spread-Skill technique, whereas, BMA controls the spread by adjusting the kernel width during the KDE step.



Fitting the Statistical Model 

• Challenge is to estimate statistical model 
parameters 
 
 
 
 

• Raftery et al. (2005) estimated parameters with 
the Expectation Maximization Algorithm 
(Dempster et al., 1977). 
 
 

 
 

 

𝒑 𝒚 =  �𝒘𝒌𝑵(𝒇𝑲,𝝈𝟐)
𝑲

𝒌=𝟏

 

Where  
 wk are weights -> 𝑝 𝑀𝑘 𝑦𝑇  
 fk is the ensemble-member forecast 
 σ is the predictive variance 
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 Dempster, A.P.; Laird, N.M.; Rubin, D.B. (1977). "Maximum Likelihood from Incomplete Data via the EM Algorithm". Journal of the Royal Statistical Society. Series B (Methodological) 39 (1): 1–38. JSTOR 2984875. MR 0501537.



Example NAEFS Application 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 24 48 72 96 120 144 168 192

CR
PS

 [F
] 

Projection [h] 

Max T, CRPS, Cool Season, 4 Years Cross Validated 

Spread-Skill
BMA

Presenter
Presentation Notes
We tested the Bayesian Model Averaging technique as proposed by Raftery et al. (2005).  We compared the performance of the short-sample BMA technique to the long-sample Spread-Skill method (the technique used by EKDMOS).  Daytime maximum temperature (MaxT) forecasts were created by applying the EKDMOS forecast equations to the 42 members of the North American Ensemble Forecast System (NAEFS) to produce 42 MOS forecasts.  A probabilistic forecast was created from the MOS forecast with either BMA or Spread-Skill.   The forecasts were verified with the Cumulative Rank Probability Score (CRPS) -- a negatively-oriented score that measures sharpness and reliability.  In terms of CRPS, Spread-Skill (blue line) and BMA (red line) performed similar.
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Example NAEFS Application 
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These Probability Integral Transform (PIT) histograms examine the statistical reliability of the probabilistic forecasts.  Spread-skill is shown in black while BMA in red.  Both techniques created well-calibrated forecasts compared to the raw ensemble (not shown).



Fitting the Statistical Model 

• EM Algorithm  
– Iterative 
– Must keep entire training sample on hand 
– Prone to overfitting with small samples (Hamill 2007) 

• Propose Decaying Average BMA 
– Estimate parameters with decaying averages rather 

than EM algorithm 
– Stable estimates 
– Less data storage 
– Results comparable to EM algorithm 
– Similar to NCEP’s bias correction 
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The BMA results we have shown so far used the iterative EM algorithm to fit the BMA parameters; however, technique has some drawbacks.  1) In certain circumstances, algorithm may fail to converge.  This can be a problem for operational systems that operate autonomously 24/7/365.  2) Computer jobs with iterative procedures often exhibit variable run times which is problematic for operational systems that follow a strict schedule.  3) And perhaps most importantly, the EM methodology requires retaining the entire training sample which may not be feasible in operations.

The proposed Decaying Average BMA avoids these issues.



Decaying Average BMA 

• Use similar formulation to Raftery et al. (2005) 
• Continuously update estimate of weights and 

predictive standard deviation as past forecasts 
verify 

• Update is via a decaying average 
 

New Estimate = (0.95 × Old Estimate) + (0.05 × Latest Estimate) 



Decaying Average BMA 

• Issue a forecasts 
– For example, the 42 hour 2-m temperature 

forecast 

• Wait for forecast to verify 
– Different projections verify at different times 

• Pair forecast with its verifying observation 
• Begin update process 



Decaying Average BMA 

• Two-step procedure 
– First update weights 
– Then update predictive standard error 

• Going to demonstrate procedure for updating 
weights 
– Update for predictive error is similar 



For one case, take member forecasts 
and observation, and compute… 

𝑧𝑘
𝑗 =

𝑤𝑘
𝑗−1𝑔(𝑦𝑗|𝑓𝑘

𝑗 ,𝜎𝑗−1)
∑ 𝑤𝑖
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𝑤𝑘
𝑗−1 

𝑔(𝑦𝑡|𝑓𝑘𝑘,𝜎𝑗−1) 

Previous weight estimate 
for member k 

N(fk
j,σj-1) evaluated  

at observation yt. 

k         Ensemble Member 

j         Current day being verified 

yj          Observation 



Example Z calculation 

𝑧𝑘
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Single Ensemble Forecast 
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This figure shows two Probability Density Functions (PDF) associated with ensemble members k1 and k2.  The PDFs have means centered at the ensemble member forecasts and variances computed by latest DABMA update.  The vertical line shows the verifying observation.

Clearly, previous runs of DABMA assigned a larger weight to member 1 than member 2.  For this run, however, member 2 has produced a better forecast.

The next slides illustrate how the DABMA technique updates the weights given a new observation.
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Example Z calculation 
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Updating the Weights 

• zj
k values enter into decaying average update 

 
 𝑤𝑘

𝑗= (1 − 𝛼) × 𝑤𝑘
𝑗−1+𝛼 × 𝑧𝑘

𝑗  

α          Decaying weight (~.05) 
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Here wjk is the running estimate of the weight at day j for member k.



   Single z Value 
   Decaying Average (α = 0.05) 
 

Decaying Average BMA Example 
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This slides traces member 1’s weight over time.  We see that the running estimate (blue line) stays close to the theoretically correct value (gray line).  The results are from synthetic data.  We hope to develop similar examples using actual data.

The DABMA technique was applied to 1500 days of synthetic data.  The data were generated in a way that would make the “correct” weight for member 1 a value of 0.8.  The chart illustrates the behavior of the weight for member 1 on each day and compares it with the value computed by the decaying average technique.  The DABMA technique was given ~1000 days of spin-up time.



Comparison with Raftery’s BMA 

Day in Sample 

M
em

be
r 1

 W
ei

gh
t 

Single z Value 
Decaying Average (α = 0.05) 
EM Algorithm (50 days) 

Hypothetical 2 member ensemble 
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Same as the previous slide with the addition of a red line computed using the BMA technique as described by Raftery, et al. (2005).  Note that the DABMA estimate is smoother than the EM algorithm.



Decaying Average BMA Spread 

• With today’s zj
k values compute 

𝑠2(𝑗) = �𝑧𝑘
𝑗 𝑦𝑖 − 𝑓𝑘

𝑗 2
𝐾

𝑘=1

 

k         Ensemble Member 

j         Current day being verified 

yj          Observation 

fj          Ensemble Member Forecast k 



Decaying Average BMA Spread 

• s2(j) enters into the decaying average algorithm 

𝜎2(𝑗)= (1 − 𝛼) × 𝜎2(𝑗−1)+𝛼 × 𝑠2(𝑗) 

α          Decaying weight (~.05) 



Comparison with Raftery’s BMA 
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Conclusions 

• Propose to use Decaying Average BMA 
– Stable parameter estimates 
– Less data storage (~3 days) 
– Avoids iterative algorithm 
– Results asymptotically similar to EM algorithm 

• SREF 
– 21 members – 3 distinct models 
– 7 member sub-ensembles -> 3 weights, 1 standard 

deviation 
 

 




